

We will start momentarily at 2pm ET

All recordings will be available to only ACS Members http://acswebinars.org/waste-wealth

If you enjoy ACS Webinars[®] every Thursday... please support the program!

Join the world's largest society for chemical professionals to start enjoying the many benefits of membership

www.join.acs.org

ACS Network

ACS Network (search for group acswebinars) www.communities.acs.org

Find the many benefits of ACS membership!

How has ACS Webinars[®] benefited you?

"ACS Webinars help me to find out not only about the **latest scientific research** but also about understanding the **fun of everyday chemistry**. For a young person it is really encouraging to know that the **best people in the field of science** are willing to share information and give good advice."

Fan of the Week

Aida Grga Master of Conservation-Restoration

Be a featured fan on an upcoming webinar! Write to us @ <u>acswebinars@acs.org</u>

Q: "Hungry for a brain snack?"

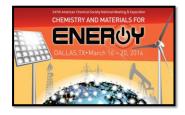
A: ACS OWEBINETS™ on YOU Tube

"ACS Webinets[™] are 2 minute segments that bring you valuable snippets from some of our most popular full length ACS Webinars[®] "

See all of our ACS WebinetsTM on YouTube at http://bit.ly/acswebinets

Beginning in 2014 all recordings of ACS Webinars will be available only to current ACS members.

We appreciate your patience while we work to complete the migration of past and current episodes, which we hope to have available as soon as possible.


Live weekly ACS Webinars will continue to be available to the general public.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars[®] www.acs.org/acswebinars.

Thursday, March 13, 2014

"Detecting Bioterrorism: Is Chemistry Enough?"

Dr. Kristin Omberg, Los Alamos National Laboratory Dr. Darren Griffen, University of Kent

Monday and Tuesday, March 17-18, 2014

"Exclusive Access to Experts from the ACS National Meeting"

2pm ET: The Chemistry of Solar Energy: Materials for Conversion of Light to Electricity

5pm ET: The Kavli Foundation Emerging Leader in Chemistry Lecture with Dr. Emily Weiss

6pm ET: The Fred Kavli Foundation Innovations in Chemistry Lecture with Dr. John A. Rodgers

And much more....

Acknowledgement:

Co-produced with the ACS GCI

Next in the ACS GCI Series June 19th @ 2pm ET

Green Chemistry Centre of Excellence

Who Are We?

James Clark is Professor of Chemistry and Director of the Green Chemistry Centre of Excellence at the University of York where he runs a large team researching bio-renewables, waste valorization and sustainable chemistry. He has distinctions including medals from the Royal Society of Chemistry, the Society of Chemical Industry and an honorary doctorate from the University of Gent. He has about 400 research articles and many edited books.

Who Are We?

Green

Dr. Avtar Matharu is Deputy Director of the Green Chemistry Centre and Scientific Leader for Renewable Materials Technology Platform. His background is synthetic organic chemistry relevant to design, synthesis and characterisation of functional materials such as liquid crystals and ultra-high capacity optical data storage media. His research now focuses on technological innovations in green and sustainability chemistry.

UNIVERSITY of York

UNIVERSITY of York

UNIVERSITY of York

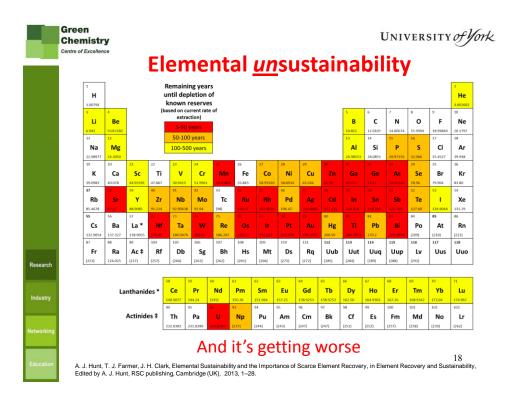
UNIVERSITY of York

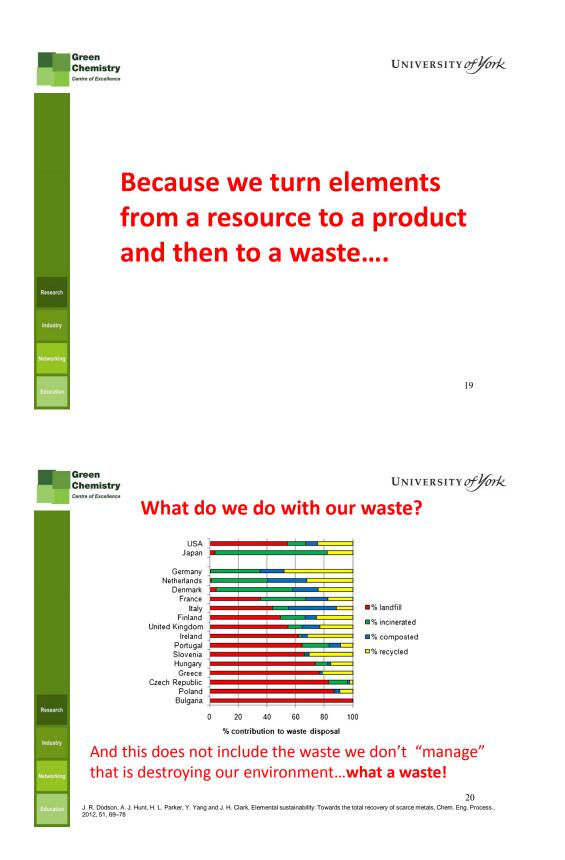
Green Chemistry Centre of Excellence

Research Industry Networking Education

Dr. Andrew J. Hunt is scientific leader of the natural solvent technology platform at the Green Chemistry Centre. His research interests include elemental sustainability, solvents and supercritical fluids. His work on the recovery of polyvinyl alcohol from waste LCD's received significant attention including a press conference at the ASC green chemistry conference, Washington DC, June 2010. He has recently edited a book on "Elemental recovery and sustainability" as part of the RSC Green Chemistry book series.

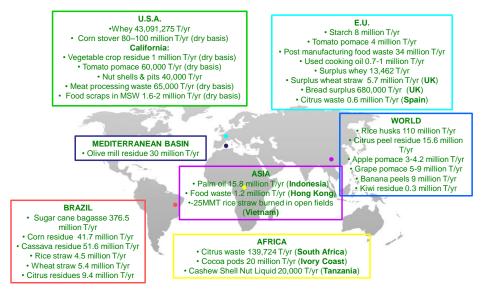
Who Are We?



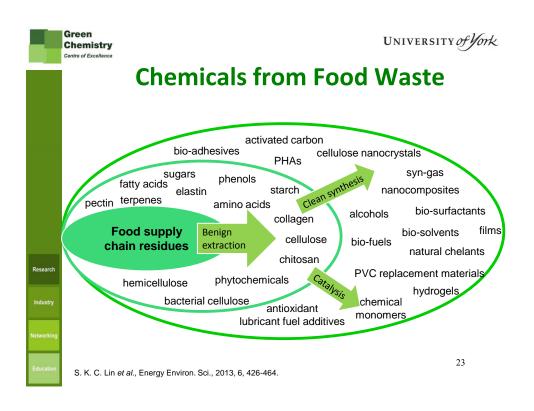

Lucie A. Pfaltzgraff is a PhD student at the Green Chemistry Centre under the supervision of Professor James Clark. Her research interests include the valorisation of food supply chain waste as a valuable biorefinery feedstock, mapping the availability and studying the cost effectiveness of this resource. Her project focuses on the use of low temperature microwave processes for the combined extraction of citrus peel compounds.

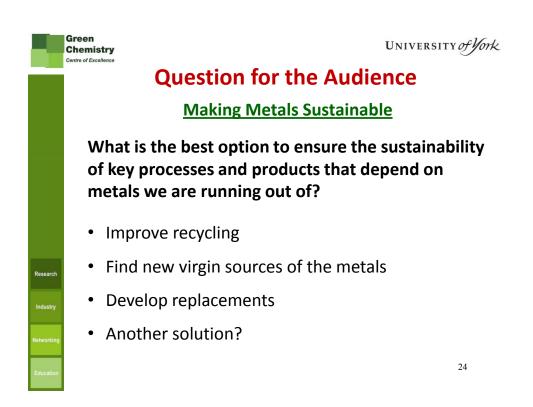
Benefits of Chemicals - Everywhere!

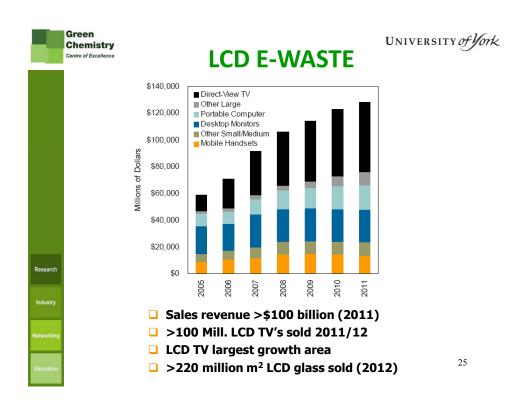
But we are running out of key resources... ¹⁷

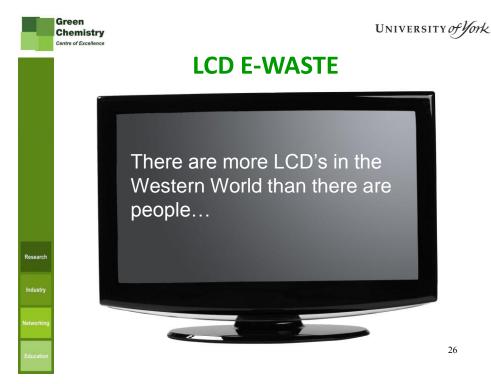


Instead of a problem, waste can become tomorrow's resource




But we must use green technologies


2014 = European Year of Food Waste

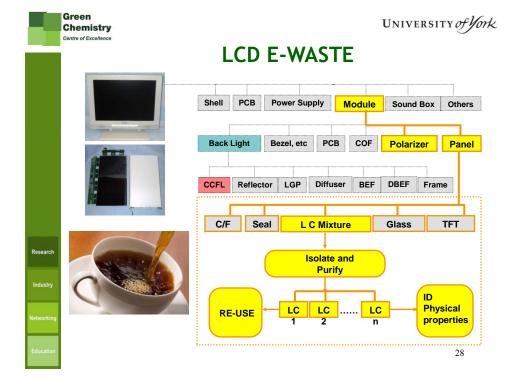


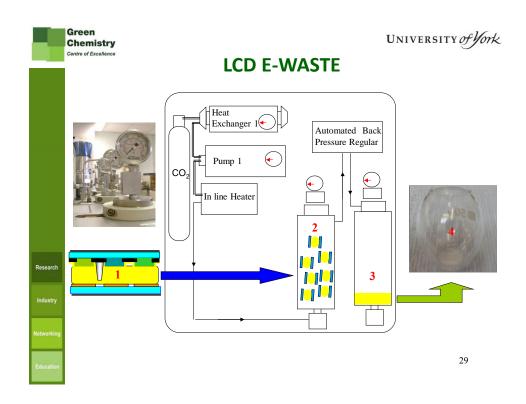
S. K. C. Lin et al., Energy Environ. Sci., 2013, 6, 426-464.

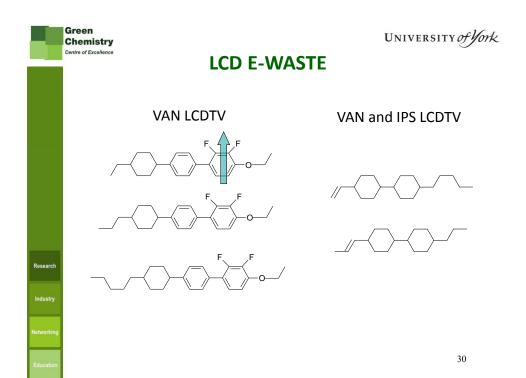
Research

Industr

LCD E-WASTE

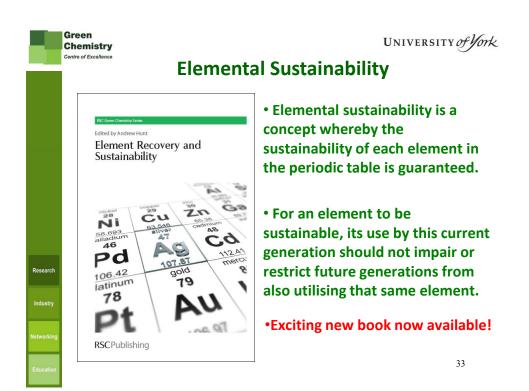

WEEE DIRECTIVE (2002/96/EC)

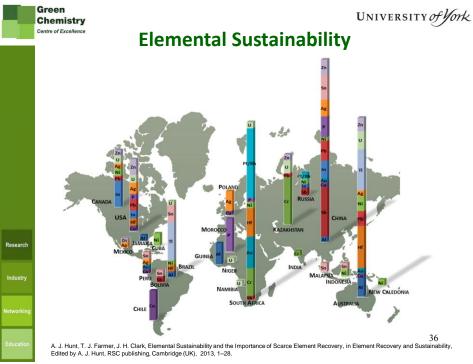

"LCD containing WEEE with a surface area greater than **100 cm²** and those with **Hg** containing backlights must be isolated..."

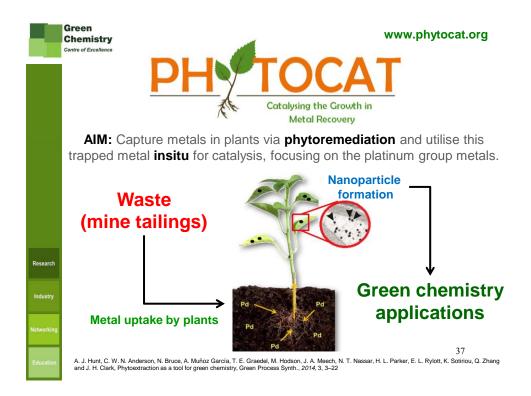

LCD CONTAINING WEEE IS THE **FASTEST GROWING** WASTE SOURCE IN THE EU

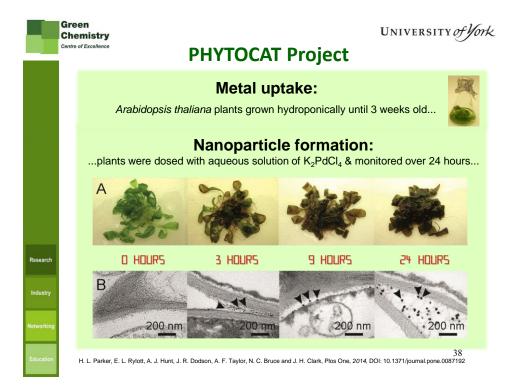
LCs classified as non-hazardous (waste code number 16 02 16)

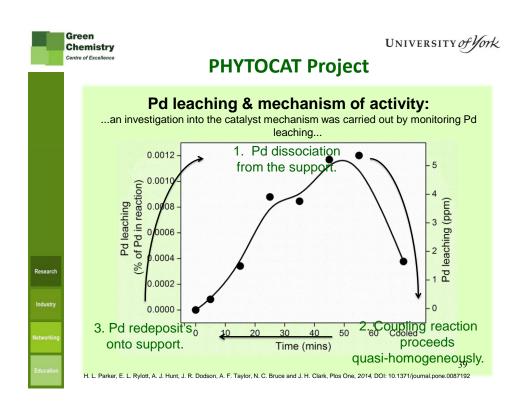
CURRENT PRACTICE: Remove Hg Lamp and shred the rest

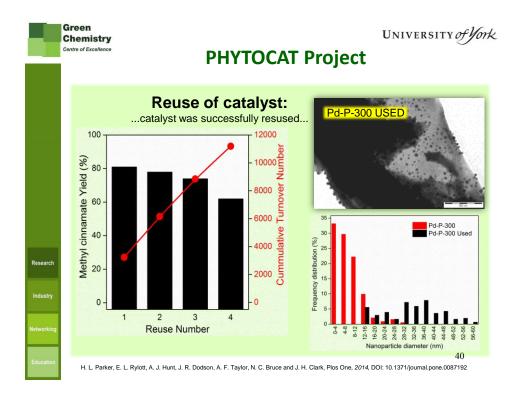


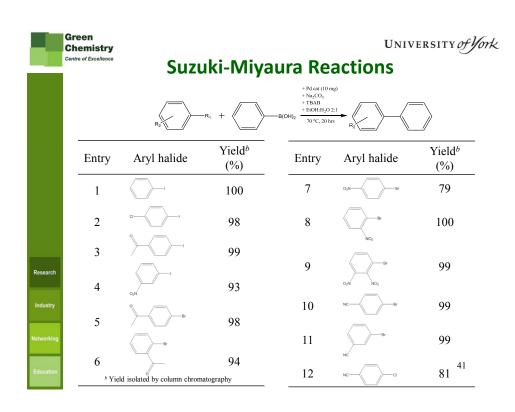





	Green Chemis Centre of Exc				E	Ele	me	enta	al S	Sus	tai	nal	bili		NIVE	ERSI	тү д	eYo,
	1 H 1.00794				until de	ning yea epletion reserve	of											2 He 4.002603
	3	4		(1		current ra	te of						5	6	7	8	9	10
	Li	Be				raction) 0 vears							В	с	N	0	F	Ne
	6.941	9.012182				0 years							10.811	12.0107	14.00674	15.9994	18.99840	20.1797
	11 Na	12 Mg				00 years	_						13 Al	14 Si	15 P	16 S	17 CI	18 Ar
	22.98977	24.3050			100-5	iou years							26.98153	28.0855	39.97376	32.066	35.4527	39,948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.0983	40.078	44.95591	47.867	50.941				58.93320		63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49			52	53	54
	Rb	Sr	Y	Zr	Nb			Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	85.4678	87.62 56	88.9085 57	91.224	92.906	38 95.94	(98)	101.07	102.9055	106.42	107.8682	112.411 80	114.818 81	118.760 82	121.760	127.60 84	126.9044 85	131.29 86
	Cs	Ba	La *	Hf	Та	w	Re	Os	l Ir	Pt	Au	Hg	т	Pb	Bi	Po	At	Rn
_	132.9054	137.327	138.9055	178.49	180.94	79 183.84	186.207	190.23		195.078	196.9665		204.3833	270.2	208.9804	(209)	(210)	(222)
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
earch	Fr	Ra	Ac ‡	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rq	Uub	Uut	Uuq	Uup	Lv	Uus	Uuo
	(223)	226.025	{227}	(257)	(260)	(263)	(262)	(265)	(266)	{271}	(272)	(285)	(284)	(289)	(288)	(292)		
ustry																		
usuy					58	59 Pr	60 Nd	61	62	63 Eu	64 Gd	65 Tb	66 Du	67 Ho	68 Er	69	70 Yb	71
		La	nthanic	ies *	Ce 140.9077	Pr 144.24	NC (145)	Pm 150.36	Sm 151.964	EU 157.25	GC 158.9253	1D 158.9253	Dy 162.50	HO 164.9303	Lr 167.26	Tm 168.9342	173.04	Lu 174.967
					90	144.24 91	92	93	151.964 94	157.25 95	158.9253 96	158.9253 97	98	164.9303 99	107.26	108.9342	173.04	174.967
orking			Actinid	es‡	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
					232.0381	231.0289		(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)


A. J. Hunt, T. J. Farmer, J. H. Clark, Elemental Sustainability and the Importance of Scarce Element Recovery, in Element Recovery and Sustainability Edited by A. J. Hunt, RSC publishing, Cambridge (UK), 2013, 1–28.

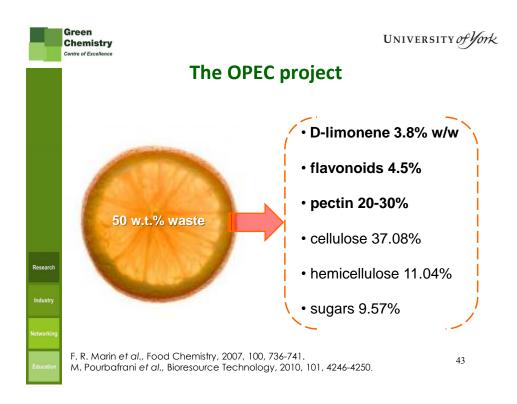

					-	ICI	ne	IILC	21 1	Rec	yu		5				
1	1			Current		of											2
н					cling 1%												1
1.00794					.0%							5	6	7	8	9	4.0
с II.	Be			10-	25%	-						в	Ċ	ŃN	o	F	10
6.941	9.012182			25-	50%							10.811	12.0107	14.00574	15.9994	18.99840	20.
11	12			>5	0%							13	14	15	16	17	18
Na	Mg			No data	availabl	e						AI	Si	P	S	CI	
22.98977	24.3050	21	22	23	24	25	26	27	28	29	30	26.98153	28.0855	39.97376	32.066	35.4527	39
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	
39.0983	40.078	44.95591	47.867	50.9415	51.9961	54.9380	4 55.845	58.9332	58.6934	63.546	65.39	69.723				79.904	83.
37	38		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	3
85.4678	87.62 56	88.9085 57	91.224	92.90638	95.94 74	(98)	101.07 76	102.905	5 105.42 78	107.8682	112.411 80	114.818 81	118.760 82	121.760	127.60 84	126.9044 85	13
Cs	Ba	La *	Hf	Та	w	Re	Os	lr.	Pt	Au	Hg	т	Pb	Bi	Ро	At	
132.9054	137.327	138.9055	178.49	180.9479	183.84	186.207		192.217	195.078		200.59	204.3833	270.2	208.9804	(209)	(210)	(22
																	111
																Uus	U
				8	59	60	61	62	63	64	65	66	67	68	69	70	T
	La	nthanio	des *	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	
				140.9077	144.24	(145)	150.36	151.964	157.25	158.9253	158.9253	162.50	164.9303	167.26	168.9342	173.04	17
					91	92	93	94	95	96	97	98	99	100	101	102	10
		Actinid	es Ŧ	Th	Pa	U	Np (237)	Pu	Am (243)	Cm (247)	Bk (247)	Cf	Es	Fm	Md	No	



UNIVERSITY of York

Question for the Audience

Food for Thought


Food supply chain waste is available in very large quantities worldwide. How do you think it is best exploited?

- Traditional uses such as feed and animal bedding
- Anaerobic digestion
- Extraction of high value chemicals
- Conversion to commodity chemicals
- Other uses

Green

Research

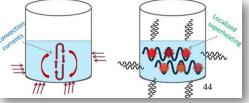
Chemistry Centre of Excellence

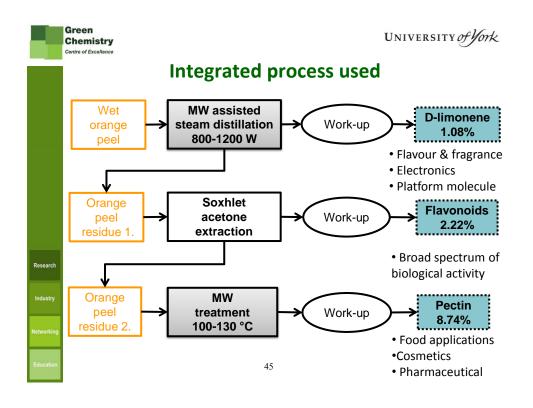
UNIVERSITY of York

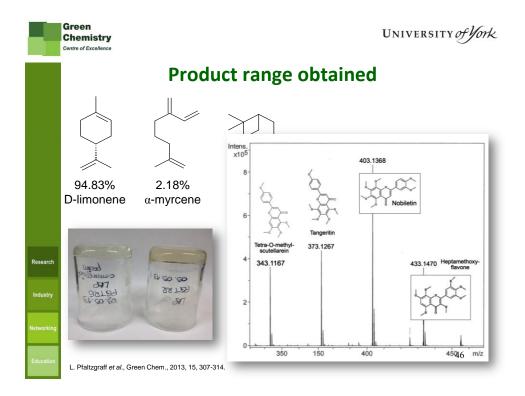
Why microwave technology?

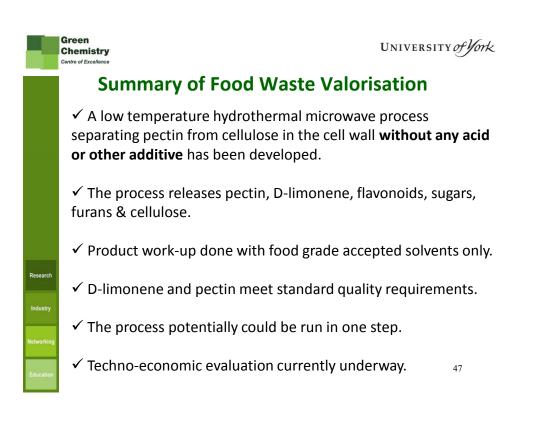
Desirables for the design of an integrated conversion process:

- ✓ volumetric heating
- ✓ Scalable

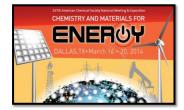

Green


Chemistry Centre of Excellence


- ✓ flexible
- ✓ allows continuous processing
- ✓ feedstock agnostic
- \checkmark allows the use of wet


feedstocks

	Green Chemistry Centre of Excellenc	9
	Centre of Excellence	Conclusion
	che	cannot afford to continue to throw away such large amounts of valuable micals especially as many traditional resources are liable to run out in a ter of years
		at we currently consider to be waste streams are actually a rich source of micals
	орр	prising current process wastes or by-products can give new business ortunities to companies and strengthen the overall business model for the cess
		d supply chain wastes are available worldwide and are a rich source of able chemicals and materials
Research		us is a good example of a high volume widely distributed food waste that be converted to chemicals and materials using green chemical technologies
Industry		aste is an increasingly large volume waste that is a good source of waste anics and waste metals
Networking Education	-	tomining is a green technology that can be used to capture valuable metals n mining and other waste streams 48



Upcoming ACS Webinars®

www.acs.org/acswebinars.

Thursday, March 13, 2014

"Detecting Bioterrorism: Is Chemistry Enough?"

Dr. Kristin Omberg, Los Alamos National Laboratory Dr. Darren Griffen, University of Kent

Monday and Tuesday, March 17-18, 2014

"Exclusive Access to Experts from the ACS National Meeting"

2pm ET: The Chemistry of Solar Energy: Materials for Conversion of Light to Electricity

 ${\rm 5pm}$ ET: The Kavli Foundation Emerging Leader in Chemistry Lecture with Dr. Emily Weiss

 ${\bf 6pm}$ ET: The Fred Kavli Foundation Innovations in Chemistry Lecture with Dr. John A. Rodgers

And much more....

Contact ACS Webinars ® at acswebinars@acs.org

ACS Chemistry for Life®

51

52

Advancing Chemistry, Innovating for Sustainability

How has ACS Webinars[®] benefited you?

"ACS Webinars help me to find out not only about the **latest scientific research** but also about understanding the **fun of everyday chemistry**. For a young person it is really encouraging to know that the **best people in the field of science** are willing to share information and give good advice."

Fan of the Week

Aida Grga Master of Conservation-Restoration

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

٩CS

56

Stay Connected...

Co-produced with the ACS GCI

Next in the ACS GCI Series June 19th @ 2pm ET

If you enjoy ACS Webinars[®] every Thursday... please support the program!

society for chemical professionals to start enjoying the many benefits of membership

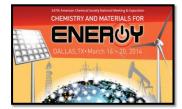
www.join.acs.org

ACS Network (search for group acswebinars) www.communities.acs.org

Find the many benefits of ACS membership!

57

58


ACS Webinars[®] does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Upcoming ACS Webinars®

www.acs.org/acswebinars.

Thursday, March 13, 2014

"Detecting Bioterrorism: Is Chemistry Enough?"

Dr. Kristin Omberg, Los Alamos National Laboratory Dr. Darren Griffen, University of Kent

Monday and Tuesday, March 17-18, 2014

"Exclusive Access to Experts from the ACS National Meeting"

2pm ET: The Chemistry of Solar Energy: Materials for Conversion of Light to Electricity

 ${\rm 5pm}~{\rm ET}$: The Kavli Foundation Emerging Leader in Chemistry Lecture with Dr. Emily Weiss

 ${\rm 6pm}$ ET: The Fred Kavli Foundation Innovations in Chemistry Lecture with Dr. John A. Rodgers

And much more

Contact ACS Webinars ® at acswebinars@acs.org